Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Epidemiol ; 53(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38641428

RESUMO

BACKGROUND: Distributed lag non-linear models (DLNMs) are the reference framework for modelling lagged non-linear associations. They are usually used in large-scale multi-location studies. Attempts to study these associations in small areas either did not include the lagged non-linear effects, did not allow for geographically-varying risks or downscaled risks from larger spatial units through socioeconomic and physical meta-predictors when the estimation of the risks was not feasible due to low statistical power. METHODS: Here we proposed spatial Bayesian DLNMs (SB-DLNMs) as a new framework for the estimation of reliable small-area lagged non-linear associations, and demonstrated the methodology for the case study of the temperature-mortality relationship in the 73 neighbourhoods of the city of Barcelona. We generalized location-independent DLNMs to the Bayesian framework (B-DLNMs), and extended them to SB-DLNMs by incorporating spatial models in a single-stage approach that accounts for the spatial dependence between risks. RESULTS: The results of the case study highlighted the benefits of incorporating the spatial component for small-area analysis. Estimates obtained from independent B-DLNMs were unstable and unreliable, particularly in neighbourhoods with very low numbers of deaths. SB-DLNMs addressed these instabilities by incorporating spatial dependencies, resulting in more plausible and coherent estimates and revealing hidden spatial patterns. In addition, the Bayesian framework enriches the range of estimates and tests that can be used in both large- and small-area studies. CONCLUSIONS: SB-DLNMs account for spatial structures in the risk associations across small areas. By modelling spatial differences, SB-DLNMs facilitate the direct estimation of non-linear exposure-response lagged associations at the small-area level, even in areas with as few as 19 deaths. The manuscript includes an illustrative code to reproduce the results, and to facilitate the implementation of other case studies by other researchers.


Assuntos
Poluição do Ar , Humanos , Poluição do Ar/análise , Dinâmica não Linear , Teorema de Bayes , Temperatura
2.
Environ Res ; 248: 118408, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311205

RESUMO

Climate change and population ageing are converging challenges that are expected to significantly worsen the health impacts of high temperatures. We aimed to remeasure the implications of ageing for heat-related mortality by comparing time trends based on chronological age (number of years already lived) with those derived from the application of state-of-the-art demographic methodology which better captures the dynamics of evolving longevity: prospective age (number of years still to be lived). We conducted a nationwide time-series analysis of 13 regions in Spain over 1980-2018 using all-cause mortality microdata for people aged 65+ and annual life tables from the Spanish National Institute of Statistics, and daily mean temperatures from E-OBS. Based on confounder-adjusted quasi-Poisson regression with distributed lag non-linear models and multivariate meta-analysis in moving 15-year timeslices, we assessed sex-specific changes in absolute risk and impacts for heat-related mortality at extreme and moderate temperatures, for chronological and prospective age groups. In the conventional chronological age analysis, absolute risk fell over the study period (e.g. females, extreme heat: -54%; moderate heat: -23%); after accounting for rising longevity, the prospective age analysis, however, found a smaller decline in risk for extreme heat (-15%) and a rise for moderate heat (+46%). Additionally, while the chronological age analysis suggested a shift in mortality towards higher ages, the prospective age analysis showed that over the study period, people of largely the same (prospective) age were impacted. Further, the prospective age analysis revealed excess risk in females (compared to males) rose from 20% to 27% for extreme heat, and from 40% to 70% for moderate heat. Assessing the implications of ageing using a prospective age perspective showed the urgency of re-doubling risk reduction efforts, including accelerating healthy ageing programs that incorporate climate considerations. The age patterns of impacts suggested that such actions have the potential to mitigate ageing-related heat-health threats to generate climate change-ready, healthy societies.


Assuntos
Calor Extremo , Temperatura Alta , Masculino , Feminino , Humanos , Espanha/epidemiologia , Estudos Prospectivos , Temperatura , Mortalidade
3.
Eur J Prev Cardiol ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38364198

RESUMO

AIMS: We assessed the association of temperature and temperature variability with cause-specific emergency hospitalizations and mortality from cardiovascular and respiratory diseases in Spain, as well as the effect modification of this association by individual and contextual factors. METHODS AND RESULTS: We collected data on health (hospital admissions and mortality), weather (temperature and relative humidity), and relevant contextual indicators for 48 Spanish provinces during 2004-2019. The statistical analysis was separately performed for the summer (June-September) and winter (December-March) seasons. We first applied a generalized linear regression model with quasi-Poisson distribution to estimate daily province-specific temperature-health associations, and then we fitted multilevel multivariate meta-regression models to the evaluate effect modification of the contextual characteristics on heat- and cold-related risks. High temperature increased the risk of mortality across all cardiovascular and respiratory diseases, with the strongest effect for hypertension (relative risk (RR) at 99th temperature percentile vs. optimum temperature: 1.510 [95% empirical confidence interval {eCI} 1.251 to 1.821]), heart failure (1.528 [1.353 to 1.725]), and pneumonia (2.224 [1.685 to 2.936]). Heat also had an impact on all respiratory hospitalization causes (except asthma), with similar risks between pneumonia (1.288 [1.240 to 1.339]), acute bronchitis and bronchiolitis (1.307 [1.219 to 1.402]), and chronic obstructive pulmonary disease (1.260 [1.158 to 1.372]). We generally found significant risks related to low temperature for all cardiovascular and respiratory causes, with heart failure (RR at 1st temperature percentile vs. optimum temperature: 1.537 [1.329 to 1.779]) and chronic obstructive pulmonary disease (1.885 [1.646 to 2.159]) exhibiting the greatest risk for hospitalization, and acute myocardial infarction (1.860 [1.546 to 2.238]) and pneumonia (1.734 [1.219 to 2.468]) for mortality. Women and the elderly were more vulnerable to heat, while people with secondary education were less susceptible to cold compared to those not achieving this educational stage. Results from meta-regression showed that increasing heating access to the highest current provincial value (i.e. 95.6%) could reduce deaths due to cold by 59.5% (57.2 to 63.5). CONCLUSION: Exposure to low and high temperatures was associated with a greater risk of morbidity and mortality from multiple cardiovascular and respiratory conditions, and heating was the most effective societal adaptive measure to reduce cold-related mortality.


Exposure to low and high temperatures increases the risk of morbidity and mortality from several cardiovascular and respiratory diseases, especially among the elderly. Increasing access to heating could substantially reduce cold-related mortality burden.

5.
Environ Int ; 182: 108284, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029621

RESUMO

BACKGROUND: A number of studies have reported reductions in mortality risk due to heat and cold over time. However, questions remain about the drivers of these adaptation processes to ambient temperatures. We aimed to analyse the demographic and socioeconomic drivers of the downward trends in vulnerability to heat- and cold-related mortality observed in Spain during recent decades (1980-2018). METHODS: We collected data on all-cause mortality, temperature and relevant contextual indicators for 48 provinces in mainland Spain and the Balearic Islands between Jan 1, 1980, and Dec 31, 2018. Fourteen contextual indicators were analysed representing ageing, isolation, urbanicity, heating, air conditioning (AC), house antiquity and ownership, education, life expectancy, macroeconomics, socioeconomics, and health investment. The statistical analysis was separately performed for the range of months mostly causing heat- (June-September) and cold- (October-May) related mortality. We first applied a quasi-Poisson generalised linear regression in combination with distributed lag non-linear models (DLNM) to estimate province-specific temperature-mortality associations for different periods, and then we fitted univariable and multivariable multilevel spatiotemporal meta-regression models to evaluate the effect modification of the contextual characteristics on heat- and cold-related mortality risks over time. FINDINGS: The average annual mean temperature has risen at an average rate of 0·36 °C per decade in Spain over 1980-2012, although the increase in temperature has been more pronounced in summer (0·40 °C per decade in June-September) than during the rest of the year (0·33 °C per decade). This warming has been observed, however, in parallel with a progressive reduction in the mortality risk associated to both hot and cold temperatures. We found independent associations for AC with heat-related mortality, and heating with cold-related mortality. AC was responsible for about 28·6% (31·5%) of the decrease in deaths due to heat (extreme heat) between 1989 and 1993 and 2009-2013, and heating for about 38·3% (50·8%) of the reductions in deaths due to cold (extreme cold) temperatures. Ageing (ie, proportion of population over 64 years) attenuated the decrease in cold-related mortality. INTERPRETATION: AC and heating are effective societal adaptive measures to heat and cold temperatures. This evidence holds important implications for climate change health adaptation policies, and for the projections of climate change impacts on human health.


Assuntos
Temperatura Baixa , Calor Extremo , Humanos , Temperatura Alta , Espanha/epidemiologia , Temperatura , Calor Extremo/efeitos adversos , Mortalidade
6.
Environ Health Perspect ; 131(8): 87013, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37606292

RESUMO

BACKGROUND: Heat is a significant cause of mortality, but impact patterns are heterogenous. Previous studies assessing such heterogeneity focused exclusively on risk rather than heat-attributable mortality burdens and assume predictors are independent. OBJECTIVES: We assessed how four interrelated regional-level sociodemographic predictors-education, life expectancy, the ratio of older to younger people (aging index), and relative income-influence heterogeneity in heat-attributable mortality burdens in Europe and then derived insights into adaptation strategies. METHODS: We extracted four outcomes from a temperature-mortality study covering 16 European countries: the rate of increase in mortality risk at moderate and extreme temperatures (moderate and extreme slope, respectively), the minimum mortality temperature percentile (MMTP), and the underlying mortality rate. We used structural equation modeling with country-level random effects to quantify the direct and indirect influences of the predictors on the outcomes. RESULTS: Higher levels of education were directly associated with lower heat-related mortality at moderate and extreme temperatures via lower slopes and higher MMTPs. A one standard deviation increase in education was associated with a -0.46±0.14, -0.41±0.12, and 0.41±0.12 standard deviation (±standard error) change in the moderate slope, extreme slope, and MMTP, respectively. However, education had mixed indirect influences via associations with life expectancy, the aging index, and relative income. Higher life expectancy had mixed relations with heat-related mortality, being associated with higher risk at moderate temperatures (0.33±0.11 for the moderate slope; -0.19±0.097 for the MMTP) but lower underlying mortality rates (-0.72±0.097). A higher aging index was associated with higher burdens through higher risk at extreme temperatures (0.13±0.072 for the extreme slope) and higher underlying mortality rates (0.93±0.055). Relative income had relatively small, mixed influences. DISCUSSION: Our novel approach provided insights into actions for reducing the health impacts of heat. First, the results show the interrelations between possible vulnerability-generating mechanisms and suggest future research directions. Second, the findings point to the need for a dual approach to adaptation, with actions that explicitly target heat exposure reduction and actions focused explicitly on the root causes of vulnerability. For the latter, the climate crisis may be leveraged to accelerate ongoing general public health programs. https://doi.org/10.1289/EHP11766.


Assuntos
Temperatura Alta , Fatores Sociodemográficos , Humanos , Aclimatação , Temperatura , Europa (Continente)/epidemiologia
7.
Nat Med ; 29(7): 1857-1866, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37429922

RESUMO

Over 70,000 excess deaths occurred in Europe during the summer of 2003. The resulting societal awareness led to the design and implementation of adaptation strategies to protect at-risk populations. We aimed to quantify heat-related mortality burden during the summer of 2022, the hottest season on record in Europe. We analyzed the Eurostat mortality database, which includes 45,184,044 counts of death from 823 contiguous regions in 35 European countries, representing the whole population of over 543 million people. We estimated 61,672 (95% confidence interval (CI) = 37,643-86,807) heat-related deaths in Europe between 30 May and 4 September 2022. Italy (18,010 deaths; 95% CI = 13,793-22,225), Spain (11,324; 95% CI = 7,908-14,880) and Germany (8,173; 95% CI = 5,374-11,018) had the highest summer heat-related mortality numbers, while Italy (295 deaths per million, 95% CI = 226-364), Greece (280, 95% CI = 201-355), Spain (237, 95% CI = 166-312) and Portugal (211, 95% CI = 162-255) had the highest heat-related mortality rates. Relative to population, we estimated 56% more heat-related deaths in women than men, with higher rates in men aged 0-64 (+41%) and 65-79 (+14%) years, and in women aged 80+ years (+27%). Our results call for a reevaluation and strengthening of existing heat surveillance platforms, prevention plans and long-term adaptation strategies.


Assuntos
Temperatura Alta , Mortalidade , Feminino , Humanos , Masculino , Europa (Continente)/epidemiologia , Itália/epidemiologia , Estações do Ano , Espanha/epidemiologia , Idoso de 80 Anos ou mais , Idoso , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
8.
Lancet ; 401(10376): 577-589, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36736334

RESUMO

BACKGROUND: High ambient temperatures are associated with many health effects, including premature mortality. The combination of global warming due to climate change and the expansion of the global built environment mean that the intensification of urban heat islands (UHIs) is expected, accompanied by adverse effects on population health. Urban green infrastructure can reduce local temperatures. We aimed to estimate the mortality burden that could be attributed to UHIs and the mortality burden that would be prevented by increasing urban tree coverage in 93 European cities. METHODS: We did a quantitative health impact assessment for summer (June 1-Aug 31), 2015, of the effect of UHIs on all-cause mortality for adults aged 20 years or older in 93 European cities. We also estimated the temperature reductions that would result from increasing tree coverage to 30% for each city and estimated the number of deaths that could be potentially prevented as a result. We did all analyses at a high-resolution grid-cell level (250 × 250 m). We propagated uncertainties in input analyses by using Monte Carlo simulations to obtain point estimates and 95% CIs. We also did sensitivity analyses to test the robustness of our estimates. FINDINGS: The population-weighted mean city temperature increase due to UHI effects was 1·5°C (SD 0·5; range 0·5-3·0). Overall, 6700 (95% CI 5254-8162) premature deaths could be attributable to the effects of UHIs (corresponding to around 4·33% [95% CI 3·37-5·28] of all summer deaths). We estimated that increasing tree coverage to 30% would cool cities by a mean of 0·4°C (SD 0·2; range 0·0-1·3). We also estimated that 2644 (95% CI 2444-2824) premature deaths could be prevented by increasing city tree coverage to 30%, corresponding to 1·84% (1·69-1·97) of all summer deaths. INTERPRETATION: Our results showed the deleterious effects of UHIs on mortality and highlighted the health benefits of increasing tree coverage to cool urban environments, which would also result in more sustainable and climate-resilient cities. FUNDING: GoGreenRoutes, Spanish Ministry of Science and Innovation, Institute for Global Health, UK Medical Research Council, European Union's Horizon 2020 Project Exhaustion.


Assuntos
Avaliação do Impacto na Saúde , Temperatura Alta , Adulto , Humanos , Cidades , Temperatura Baixa , Estações do Ano
9.
Nat Commun ; 13(1): 6906, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36372798

RESUMO

Daylight saving time (DST) consists in a one-hour advancement of legal time in spring offset by a backward transition of the same magnitude in fall. It creates a minimal circadian misalignment that could disrupt sleep and homoeostasis in susceptible individuals and lead to an increased incidence of pathologies and accidents during the weeks immediately following both transitions. How this shift affects mortality dynamics on a large population scale remains, however, unknown. This study examines the impact of DST on all-cause mortality in 16 European countries for the period 1998-2012. It shows that mortality decreases in spring and increases in fall during the first two weeks following each DST transition. Moreover, the alignment of time data around DST transition dates revealed a septadian mortality pattern (lowest on Sundays, highest on Mondays) that persists all-year round, irrespective of seasonal variations, in men and women aged above 40.


Assuntos
Ritmo Circadiano , Sono , Masculino , Humanos , Feminino , Estações do Ano , Incidência , Europa (Continente)/epidemiologia
12.
Lancet Planet Health ; 5(7): e446-e454, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245715

RESUMO

BACKGROUND: Europe has emerged as a major climate change hotspot, both in terms of an increase in seasonal averages and climate extremes. Projections of temperature-attributable mortality, however, have not been comprehensively reported for an extensive part of the continent. Therefore, we aim to estimate the future effect of climate change on temperature-attributable mortality across Europe. METHODS: We did a time series analysis study. We derived temperature-mortality associations by collecting daily temperature and all-cause mortality records of both urban and rural areas for the observational period between 1998 and 2012 from 147 regions in 16 European countries. We estimated the location-specific temperature-mortality relationships by using standard time series quasi-Poisson regression in conjunction with a distributed lag non-linear model. These associations were used to transform the daily temperature simulations from the climate models in the historical period (1971-2005) and scenario period (2006-2099) into projections of temperature-attributable mortality. We combined the resulting risk functions with daily time series of future temperatures simulated by four climate models (ie, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5) under three greenhouse gas emission scenarios (ie, Representative Concentration Pathway [RCP]2.6, RCP6.0, and RCP8.5), providing projections of future mortality attributable fraction due to moderate and extreme cold and heat temperatures. FINDINGS: Overall, 7·17% (95% CI 5·81-8·50) of deaths registered in the observational period were attributed to non-optimal temperatures, cold being more harmful than heat by a factor of ten (6·51% [95% CI 5·14-7·80] vs 0·65% [0·40-0·89]), and with large regional differences across countries-eg, ranging from 4·85% (95% CI 3·75-6·00) in Germany to 9·87% (8·53-11·19) in Italy. The projection of temperature anomalies by RCP scenario depicts a progressive increase in temperatures, more exacerbated in the high-emission scenario RCP8.5 (4·54°C by 2070-2099) than in RCP6.0 (2·89°C) and RCP2.6 (1·67°C). This increase in temperatures was transformed into attributable fraction. Projections consistently indicated that the increase in heat attributable fraction will start to exceed the reduction of cold attributable fraction in the second half of the 21st century, especially in the Mediterranean and in the higher emission scenarios. The comparison between scenarios highlighted the important role of mitigation, given that the total attributable fraction will only remain stable in RCP2.6, whereas the total attributable fraction will rapidly start to increase in RCP6.0 by the end of the century and in RCP8.5 already by the middle of the century. INTERPRETATION: The increase in heat attributable fraction will start to exceed the reduction of cold attributable fraction in the second half of the 21st century. This finding highlights the importance of implementing mitigation policies. These measures would be especially beneficial in the Mediterranean, where the high vulnerability to heat will lead to an imbalance between the decreasing cold and increasing heat-attributable mortality. FUNDING: None.


Assuntos
Mudança Climática , Temperatura Alta , Temperatura Baixa , Europa (Continente)/epidemiologia , Temperatura
13.
Environ Pollut ; 286: 117220, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33975212

RESUMO

The emergence of the COVID-19 pandemic forced most countries to put in place lockdown measures to slow down the transmission of the virus. These lockdowns have led to temporal improvements in air quality. Here, we evaluate the changes in NO2 and O3 levels along with the associated impact upon premature mortality during the COVID-19 lockdown and deconfinement periods along the first epidemic wave across the provincial capital cities of Spain. We first quantify the change in pollutants solely due to the lockdown as the difference between business-as-usual (BAU) pollution levels, estimated with a machine learning-based meteorological normalization technique, and observed concentrations. Second, instead of using exposure-response functions between the pollutants and mortality reported in the literature, we fit conditional quasi-Poisson regression models to estimate city-specific associations between daily pollutant levels and non-accidental mortality during the period 2010-2018. Significant relative risk values are observed at lag 1 for NO2 (1.0047 [95% CI: 1.0014 to 1.0081]) and at lag 0 for O3 (1.0039 [1.0013 to 1.0065]). On average NO2 changed by -51% (intercity range -65.7 to -30.9%) and -36.4% (-53.7 to -11.6%), and O3 by -1.1% (-20.2 to 23.8%) and 0.6% (-12.4 to 23.0%), during the lockdown (57 days) and deconfinement (42 days) periods, respectively. We obtain a reduction in attributable mortality associated with NO2 changes of -119 (95% CI: -273 to -24) deaths over the lockdown, and of -53 (-114 to -10) deaths over the deconfinement. This was partially compensated by an increase in the attributable number of deaths, 14 (-72 to 99) during the lockdown, and 8 (-27 to 50) during the deconfinement, associated with the rise in O3 levels in the most populous cities during the analysed period, despite the overall small average reductions. Our study shows that the potential trade-offs between multiple air pollutants should be taken into account when evaluating the health impacts of environmental exposures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Dióxido de Nitrogênio , Pandemias , Material Particulado/análise , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA